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Multivariate meta-analysis: A method to
summarize non-linear associations
A. Gasparrini∗† and B. Armstrong

Multivariate meta-analysis represents a promising statistical tool in several research areas. Here, we provide a
brief overview of the application of this methodology to combining complex multi-parameterized relationships,
such as non-linear or delayed associations, in multi-site studies. The discussion focuses on the advantages
over simpler univariate methods, estimation and computational issues and directions for further research.
Copyright © 2011 John Wiley & Sons, Ltd.
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In this issue of Statistics in Medicine, Jackson and collaborators offer a comprehensive overview of
the recent methodological advancements on multivariate meta-analysis, also highlighting limitations
and research directions. Among the potential areas of application illustrated in their examples, we find
particularly valuable the use of this methodology to combine multi-parameterized effects in multi-site
observational studies, such as time series studies to assess the short-term effects of environmental
stressors. These studies usually adopt a two-stage approach, where a common first-stage model is
applied to different cities or regions to derive site-specific estimates, and a second-stage meta-analysis
is performed to combine these effects [1]. The presence of complex regression models with a high
number of nuisance parameters to account for confounding factors makes the two-stage analysis attrac-
tive, circumventing the specification of a very highly parameterized hierarchical structure in a single
multilevel development.

The usual approach proposed so far is based on first-stage models which simplify or summarize the
city-specific effect in a single parameter, allowing the application of standard univariate meta-analytic
techniques in the second stage. However, in the presence of complex associations, this choice could
provide biased results with wrong assumptions about the simplified exposure-response shape (e.g.
linear), or offer only a partial description of the phenomenon if the relationship is reduced to simple
summaries. Multivariate meta-analysis has been proposed to combine non-linear dependencies [2, 3]
and distributed lag structures [4], but there is no overview of methodological options. As a motivating
example, we illustrate the association between mean daily temperature and all-cause mortality in 108
U.S.A. cities [5], estimated through a quadratic B-spline with five degrees of freedom (with three
equally spaced knots) on lag 0–3. The associations in four cities are depicted in Figure 1.

The two-stage approach described above may be applied to model these relationships across cities,
assuming that the k estimated parameters ĥi of the B-spline, defining the association in each of the
i =1, . . . ,m cities, follow a multivariate normal distribution with

ĥi ∼N(Xib,Si +R) (1)

where Si and R are the within and between-city (co)variance matrices, respectively. The term
Xi represents a k×kp block-diagonal matrix, with each 1× p block containing city-specific
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Figure 1. Temperature–mortality relationship (relative risk) in four U.S.A. cities, with reference at 20◦C.

meta-variables xi (usually with intercept). The kp-dimensional vector b contains the coefficients
specifying the change (effect modification) in each of the k true parameters h for a unit increase in
each of the p meta-variables xi . When no modifier is included, Xib≡h, the vector of true overall
(population) parameters, and the model in (1) reduces to equation (3) in the paper by Jackson and
colleagues.

The need for the more complex meta-regression model in (1), more elaborated than the framework
described by the authors for their examples, is motivated by the different focuses of the analysis: the main
interest here is not to obtain a pooled estimate of the association, but to characterize the heterogeneity
of the effects through city-specific meta-variables, while accounting for a random residual component
in R. In the specific example illustrated in Figure 1, our aim is to model a temperature–mortality
relationship reflecting patterns such as shapes relatively similar within pairs of northern (New York
and Chicago) and southern cities (Dallas and Houston), but different between them. This pattern may
be explained by meta-variables x1, . . . ,xp, representing geographical, climatological, demographical
or socio-economic determinants. Such analytical proficiency is not obviously achieved with simpler
univariate methods.

There are issues of estimation and computation specific to this area of application. Usually, the study
design allows complete control of the first-stage model, thus making the within-study covariances in
Si available. However, dimensionality needs to be taken into account: as the association is described
by a growing number of parameters h, estimation of the k(k+1)/2 (co)variance parameters in R could
be problematic. Potential solutions may involve the simplification of R, imposing for example an
autoregressive, diagonal or compound-symmetry structure. The problem is worsened by the inclusion
of a high number p of meta-variables, involving the estimation of kp coefficients. A simpler alternative
is offered by meta-smoothing [6], a method based on a series of univariate meta-analysis of the effects
estimated on a grid of exposure values, in order to recover the combined underlying relationship. While
this method offers flexibility, an overall estimate of residual heterogeneity and significance tests is not
easily provided. Finally, the model in (1) implies that exactly the same function is applied in every
city, in order for the parameters ĥi to be meaningfully combined. In the example in Figure 1, the knots
of the spline must be placed at the same values and this might represent a problem given the different
temperature ranges between cities.

In conclusion, multivariate meta-analysis represents a promising methodology to combine multi-
parameterized associations across studies. Compared with other examples described by Jackson and
colleagues, the problem here is inherently multivariate, as each parameter is not interpretable on
its own, and simplifications or approximations to re-express it in univariate terms are often limited
or biased. However, the current framework could be infeasible for complex associations, such as
distributed lag non-linear relationships, involving a high number of parameters [7]. Further research is
needed to address this problem of dimensionality, also providing some guidance on the limitations and
comparative performances of different estimation methods in relation to number of studies m, parameters
k, modifiers p and complexity of the structure of R. This framework applies to other multi-parameter
functions summarizing non-linear associations, such as strata or polynomials, and may be extended
to other multi-unit studies such as multi-centre randomized controlled trials or multi-country cohort
studies.
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